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TISSUE: uncertainty-calibrated prediction of 
single-cell spatial transcriptomics improves 
downstream analyses

Eric D. Sun    1, Rong Ma    2,3, Paloma Navarro Negredo4, Anne Brunet    4,5,6 & 
James Zou    1 

Whole-transcriptome spatial profiling of genes at single-cell resolution 
remains a challenge. To address this limitation, spatial gene expression 
prediction methods have been developed to infer the spatial expression 
of unmeasured transcripts, but the quality of these predictions can vary 
greatly. Here we present Transcript Imputation with Spatial Single-cell 
Uncertainty Estimation (TISSUE) as a general framework for estimating 
uncertainty for spatial gene expression predictions and providing 
uncertainty-aware methods for downstream inference. Leveraging 
conformal inference, TISSUE provides well-calibrated prediction intervals 
for predicted expression values across 11 benchmark datasets. Moreover, it 
consistently reduces the false discovery rate for differential gene expression 
analysis, improves clustering and visualization of predicted spatial 
transcriptomics and improves the performance of supervised learning 
models trained on predicted gene expression profiles. Applying TISSUE to a 
MERFISH spatial transcriptomics dataset of the adult mouse subventricular 
zone, we identified subtypes within the neural stem cell lineage and 
developed subtype-specific regional classifiers.

Spatial transcriptomics technologies extend high-throughput 
characterization of gene expression to the spatial dimension and 
have been used to characterize the spatial distribution of cell types 
and transcripts across multiple tissues and organisms1–6. A major 
trade-off across all spatial transcriptomics technologies is between 
the number of genes profiled and the spatial resolution such that 
most imaging-based spatial transcriptomics technologies with 
single-cell resolution are limited to the measurement of a few hun-
dred genes but typically not the whole transcriptome7. Given the 
resource-intensive nature of single-cell spatial transcriptomics data 
acquisition, computational methods for upscaling the number of 
genes by predicting the expression of additional genes of interest are  
highly desirable.

There exist several methods for imputing or predicting spatial 
gene expression using a paired single-cell RNA-sequencing (RNA-seq) 
dataset. Generally, these methods proceed by joint embedding of the 
spatial transcriptomics and RNA-seq datasets and then predicting 
expression of new spatial genes by aggregating the nearest neigh-
boring cells in the RNA-seq data8–11 or by joint probabilistic mode-
ling, mapping or transport6,12–16. For example, SpaGE relies on joint 
embedding of spatial transcriptomics and RNA-seq data using PRECISE 
domain adaptation followed by k-nearest-neighbors regression8,17; a 
method referred to as ‘Harmony’ here relies on Harmony integration 
of the two data modalities and averaging of nearest cell expression 
profiles10; and Tangram uses an optimal transport framework with 
deep learning to devise a mapping between single-cell and spatial 
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segmentations in tissue image analysis43, measure confidence of drug 
discovery predictions44 and understand the robustness of clinical 
treatment effects45. To extend the traditional conformal inference 
framework to spatial gene expression prediction, we made several 
key modifications to build well-calibrated uncertainties in TISSUE 
(Methods). First, we established an initial measure of prediction 
uncertainty that is scalable to unseen observations and agnostic to 
the prediction error. To calibrate these uncertainties to the prediction 
error, we built distributions of calibration scores by linking these initial 
measures of uncertainty to the observed prediction errors on existing 
genes in the spatial transcriptomics data. Finally, these calibration 
score distributions were used for computing well-calibrated predic-
tion intervals and improving downstream spatial transcriptomics  
data analysis.

To construct an initial measure of uncertainty that can be univer-
sally applied to all existing spatial gene expression prediction methods, 
we posited that, on average, spatially proximate cells with similar 
measured gene expression profiles will also have similar expression 
of genes that are not measured in the spatial transcriptomics gene 
panel (see Extended Data Fig. 2 for empirical observations support-
ing this assumption). As a result, large differences in predicted gene 
expression between neighboring cells of the same cell type would 
indicate low predictive performance, and highly similar predicted 
gene expressions between neighboring cells would signify high 
predictive performance for the spatial gene expression prediction 
method. To quantify this intuition, we introduce the cell-centric vari-
ability measure Uij which, for given a gene, computes for each cell a 
weighted measure of deviation between the predicted expression 
of that cell and those of the cells within a spatial neighborhood of it  
(equations (1) and (2)).

Uij = 1 +

√√√√
√

∑k∈NiWik( ̂Xkj − ̂Xij)
2

∑k∈NiWik
(1)

Wik = exp (
̂Xi,∶ ⋅ ̂Xk,∶

|| ̂Xi,∶|||| ̂Xk,∶||
) (2)

Here, ̂Xij is the predicted gene expression of cell i and gene j. For a 
given cell i, its spatial neighborhood Ni corresponds to the K closest 
cells in the spatial transcriptomics data according to Euclidean dis-
tance. For all experiments, we use K = 15, but the cell-centric variability 
is generally robust to different choices of K (Extended Data Fig. 3a; see 
Methods for additional justifications). For each neighboring cell k, we 
compute a weight Wik equal to the exponential cosine similarity in 
predicted gene expression profiles between the central cell i and its 
neighbor. These weights prioritize variability in predicted gene expres-
sion for similar cells (for example, cells of the same cell type) and 
downplay expected variability in gene expression from dissimilar cells 
without the need to explicitly define cell types or states.

The cell-centric variability is generally positively correlated with 
the absolute prediction error for spatial gene expression (Fig. 1c). 
However, the cell-centric variability does not provide an exact estimate 
of the magnitude of these errors and the relationship between these 
two quantities is highly context dependent (Extended Data Fig. 3b). 
To explicitly link the cell-centric variability to the prediction error, we 
adapt a conformal inference framework by computing the calibration 
score, which is defined as the ratio between the absolute prediction 
error and the cell-centric variability according to equation (3) (Fig. 1a):

sij =
|Xij − ̂Xij|
Uij

, (3)

where Xij denotes the measured gene expression for cell i and gene j.

transcriptomics data13. Applications of these methods have been used 
in the characterization of spatial differences in aging of mouse neural 
and glial cell populations10, recovery of immune signatures in pri-
mary tumor samples14 and identification of spatial patterns in gene  
regulation13.

Because the relative performance of these models varies substan-
tially depending on the application area and underlying datasets, there 
is no best model across all use cases7. Moreover, variability in model 
performance may adversely affect downstream analysis, particularly 
in promoting false discoveries due to prediction errors. At the same 
time, few existing gene expression prediction methods provide uncer-
tainty measures for the predicted expression profiles and there are 
no approaches for utilizing uncertainty in downstream analyses. As a 
result, it is often difficult to rely on predicted spatial gene expression 
profiles without extensive external validation or understanding of their 
context-specific uncertainties.

Here, we present TISSUE as a general wrapper framework around 
any spatial gene expression imputation or prediction model that pro-
duces well-calibrated uncertainty measures tailored to the context of 
each individual model and its use case. We show that TISSUE can be 
leveraged for improvements in various uncertainty-aware data analy-
sis tasks including the calculation of prediction intervals, hypothesis 
testing, supervised learning (for example, cell-type classification and 
anatomic region classification), and clustering and visualization of 
spatial transcriptomics data. We further show that TISSUE can be used 
to identify new cell types and subtypes that have yet to be profiled using 
spatial transcriptomics.

Results
TISSUE: cell-centric variability and calibration scores
Spatial gene expression prediction generally relies on leveraging 
spatial transcriptomics and RNA-seq data from similar cell types. The 
RNA-seq data are used to impute the expression of genes not meas-
ured in the limited spatial transcriptomics panel and can recover up to 
whole-transcriptome coverage of genes (Fig. 1a). To motivate the need 
for uncertainty quantification, we benchmarked 3 popular spatial gene 
expression prediction methods (Harmony10, SpaGE8 and Tangram13) 
on 11 publicly available spatial transcriptomics datasets (spanning 
seqFISH18, MERFISH19, STARmap20, ISS21, FISH22, osmFISH23, ExSeq24 and 
spatial enhanced resolution omics-sequencing (Stereo-seq)25 technolo-
gies; spatial data are visualized in Extended Data Fig. 1a); paired with 
single-cell or single-nuclei RNA-seq datasets (spanning Smart-seq, 
Drop-seq and 10x Chromium technologies) from the same organism 
and tissue regions7,20,23–39 (Supplementary Table 1). No method consist-
ently outperformed other methods across all spatial transcriptomics 
datasets. Similarly, methods that performed the best under one metric 
(for example, gene-wise Spearman rank correlation between measured 
and predicted gene expression; Fig. 1b) did not necessarily perform 
the best under a different evaluation metric (for example, mean abso-
lute error in predicted expression; Extended Data Fig. 1b). For a given 
method, there is also substantial heterogeneity in the relative perfor-
mance of the model between genes and cells (Fig. 1b and Extended 
Data Fig. 1b,c), suggesting that accurate estimation of uncertainty in 
spatial gene expression predictions may improve confidence in inter-
pretations and downstream analyses. We observed similar trends for 
gimVI12, an independent spatial gene expression prediction method 
(Supplementary Fig. 1a,b).

Conformal inference is a statistically rigorous and distribution-free 
framework for quantifying uncertainty of black-box models40–42. 
Traditionally, conformal inference proceeds by fitting a machine 
learning model on labeled training data, evaluating the model pre-
dictions on a small amount of labeled calibration data to build cali-
brated uncertainties, and then deploying the model on unlabeled 
test data to obtain both the predicted labels and their uncertainty. 
Conformal inference has been used to quantify uncertainty of region 
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The distribution of sij can subsequently be used to calibrate uncer-
tainties for new expression predictions by multiplying the cell-centric 
variability of those predictions by specific quantiles of the sij calibration 
score set, which returns values on the scale of prediction errors (see 
below for details). To permit flexible calibration schemes within the 
same spatial transcriptomics dataset, TISSUE allocates calibration 
scores to disjoint groups of genes and cells, referred to as the stratified 
calibration sets or groups, which are determined by k-means clustering 
of genes and then k-means clustering of cells by predicted gene expres-
sion (Fig. 1a and Methods). This stratified grouping scheme is moti-
vated by the observation that there is generally positive correlation in 

pairwise similarities of predicted expression and of prediction error 
(Extended Data Fig. 3c). The number of gene and cell subsets (kg, kc) 
can be user-specified or determined using an automated method 
(Methods), but downstream results are generally robust to exact speci-
fications of these stratified groupings. Empirically, the distribution of 
calibration scores can vary substantially across different identified 
subsets, suggesting the identification of heterogeneous calibration 
score sets (Fig. 1d and Extended Data Fig. 3d with (kg, kc) = (4, 1)). Due 
to the asymmetric distribution of transcript counts, the calibration 
scores are further separated by the sign of the prediction error into a 
lower set for Xij − ̂Xij < 0 and upper set for Xij − ̂Xij > 0 (Fig. 1a).
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Fig. 1 | Cell-centric variability and calibration scores for conformal inference. 
a, Schematic of the TISSUE calibration score generation pipeline with black-box 
gene prediction (shown is an example method using paired spatial and RNA-seq 
datasets), stratified grouping of genes and cells, calculation of cell-centric 
variability measure, and computation and allocation of the calibration score 
to different stratified groups. b, Performance of three popular gene prediction 
methods (Harmony, SpaGE, Tangram) on 11 benchmark datasets as measured 
by the gene-wise Spearman correlation between predicted and actual gene 
expression over 10-fold cross-validation. Also shown are the number of cells 
(n) in the spatial transcriptomics datasets and the number of genes (P) shared 
between spatial and RNA-seq datasets. The inner box corresponds to quartiles of 

the correlation measures, and the whiskers span up to 1.5 times the interquartile 
range of the correlation measures. Hipp., hippocampus; VISP, primary visual 
cortex; PC, prefrontal cortex; MTG, middle temporal gyrus; SC, somatosensory 
cortex; Gast., gastrulation; U2OS, U-2 OS cell line. c, Correlation of TISSUE cell-
centric variability and absolute prediction error across all dataset and prediction 
method combinations computed over 10-fold cross-validation. Log density with 
added pseudocount (log1p) is shown by color, with a maximum of 1,000 cells and 
300 genes sampled from each dataset to provide more uniform representation. 
d, Distribution of TISSUE calibration scores on mouse hippocampus ISS dataset 
and all three prediction method combinations using (kg, kc) = (4, 1). Details of 
each dataset and prediction method are available in Methods.
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TISSUE prediction intervals for predicted gene expression
We leveraged a conformal inference framework to convert 
cell-centric variability of new spatial gene expression predictions 
into well-calibrated prediction intervals using the calibration scores 
derived from the measured gene panel. Given a gene expression pre-
diction for cell a and gene b and confidence level α, we compute the 
cell-centric variability Uab and multiply it by the (⌈(m + 1)(1 − α)⌉/m)-th 
quantile of the upper and lower calibration sets of sij corresponding to 
all m predicted expression values from the same stratified group as the 
predicted expression of cell a and gene b, which yields the asymmetric 
TISSUE prediction interval with approximate 1 − α coverage (Fig. 2a). 
Using this approach, TISSUE prediction intervals can be obtained for 
every predicted gene expression and every cell in the spatial transcrip-
tomics data (see Methods for details and mathematical guarantees). 
The TISSUE prediction interval width is positively correlated with the 
absolute prediction error of measured genes under cross-validation 
(Fig. 2b). This trend persists after normalizing by the magnitude of 

predicted expression (Extended Data Fig. 4a) and also exists for differ-
ent choices of α for computing prediction interval widths (Extended 
Data Fig. 4b,c). For individual genes of interest, the TISSUE prediction 
interval width generally reflects the spatial distributions of absolute 
prediction errors such as for Plp1 in osmFISH profiling of mouse soma-
tosensory cortex (Fig. 2c), NetA in a virtual spatial transcriptomics 
profile of Drosophila embryo (Fig. 2d) and Tnfaip6 in MERFISH profiling 
of mouse primary visual cortex (Fig. 2e). Averaged across all genes and 
cells, the TISSUE prediction interval provides well-calibrated coverage 
of prediction errors on unseen genes for a broad range of confidence 
levels and across all prediction methods and spatial transcriptomics 
datasets (Fig. 2f). For individual genes, there is a general tendency 
toward well-calibrated prediction intervals (Extended Data Fig. 4d). 
Similar calibration quality for TISSUE prediction intervals was observed 
under automated selection of kg and kc (Extended Data Fig. 4e), and 
when tested on gimVI, a deep generative model for spatial gene expres-
sion prediction12 (Supplementary Fig. 1c,d). The calibration quality of 
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Fig. 2 | Prediction intervals for spatial gene expression. a, Schematic 
illustration of the TISSUE prediction interval retrieval process from the 
calibration scores for a given confidence level. b, Correlation of the 67% 
prediction interval (PI) width and the absolute prediction error across all 
dataset and prediction method combinations computed over 10-fold cross-
validation. Log density with added pseudocount (log1p) is shown by color, with 
a maximum of 1,000 cells and 300 genes sampled from each dataset to provide 
more uniform representation. c–e, Comparison of absolute prediction error 

(left) and the 67% prediction interval width (right) for a representative gene in 
the mouse somatosensory cortex osmFISH dataset (c), in the virtual Drosophila 
embryo spatial transcriptomics dataset (d) and in the mouse primary visual 
cortex MERFISH dataset (e). f, Calibration curves for TISSUE prediction intervals 
showing empirical coverage as a function of the specified confidence level across 
10-fold cross-validation. The calibration error is annotated for each prediction 
method (Methods). All prediction intervals were generated with (kg, kc) = (4, 1) 
settings for stratified grouping.
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TISSUE was also highly reproducible across technical replicates within 
a spatial transcriptomics dataset (Extended Data Fig. 4f).

We used Sprod, a framework for denoising spatially resolved tran-
scriptomics46, and the mouse somatosensory cortex osmFISH dataset 
to investigate whether TISSUE calibration would be affected by spatial 
denoising or alternative formulations of the TISSUE neighborhood 
graph for computing cell-centric variability. Across different com-
binations of preprocessing (with or without Sprod denoising) and 
neighborhood graphs (TISSUE or Sprod cell similarity graph), TISSUE 
calibration quality was comparable to that from the default TISSUE set-
tings (Extended Data Fig. 4g), suggesting that the TISSUE framework 
is likely to be robust to denoising and alternative definitions for cell 
neighborhoods. Similarly, the TISSUE prediction interval widths were 
highly correlated between the default TISSUE neighborhood graph and 
the alternative Sprod neighborhood graph (Extended Data Fig. 4h).

Uncertainty-aware hypothesis testing with TISSUE
Hypothesis testing of differences in gene expression between experi-
mental conditions, cell types or other groupings is an important tool 
in understanding biological heterogeneity and perturbation effects 
using spatial transcriptomics. We extend TISSUE calibration scores for 
more robust hypothesis testing of differential predicted gene expres-
sion across conditions. Specifically, TISSUE hypothesis testing involves 
sampling multiple imputations for the predicted gene expression val-
ues by first sampling calibration scores ̂sij’s from corresponding cali-
bration sets and then perturbing the original predicted expression 
values by Uij × ̂sij with the direction of the perturbation dependent on 
whether the sampled score was in the upper or lower set (Fig. 3a). 
Repeating this process D times yields D possible imputations for each 
cell and gene. Using multiple imputation theory, TISSUE then derives 
corrected measures of statistical significance using a modified inde-
pendent two-sample t-test (Fig. 3a and Methods). These corrected 
statistics account for the uncertainty in prediction as encoded by the 
sampling of scores for generating new imputations. This multiple 
imputation framework can be extended to other statistics of  
interest47–50.

To compare TISSUE hypothesis testing to traditional hypothesis 
testing using only the predicted gene expression values, we generated 
synthetic data using SRTsim51 in which there are two groups of cells with 
the same ground truth gene expression (see Methods for simulation 
settings). To simulate spatial gene expression prediction, we added 
biased Gaussian noise with mean μ to a portion of the genes in one of 
the cell groups but not the other, and standard Gaussian noise to all 
other gene expression values. Under this context, TISSUE hypothesis 
testing exhibited lower error rate in calling differentially expressed 
genes between the two cell groups (automated stratified grouping, 
Benjamini–Hochberg corrected P value cutoff for false discovery rate 
(FDR) = 5%) across different levels of prediction bias than traditional 
hypothesis testing (Fig. 3b).

To further evaluate TISSUE hypothesis testing, we compared it to 
the traditional hypothesis testing approach on seven publicly available 
spatial transcriptomics datasets with associated cell type or anatomic 
region labels (see Methods for details on data labeling). For each label, 
we computed the statistical significance of gene expression differences 
within that label as compared to all cells with different labels (that is, 
one-versus-all approach). Statistical significance was assessed for all 
genes in the measured gene expression with traditional hypothesis 
testing and in the predicted gene expression with both TISSUE and 
traditional hypothesis testing. Using the differentially expressed genes 
detected using measured gene expression values as the ground truth, 
we observed a lower FDR of differentially expressed genes using TISSUE 
hypothesis testing as compared to traditional hypothesis testing across 
all prediction methods and datasets. The lower FDR was observed 
across different numbers of differentially expressed gene detections 
(Fig. 3c) and across different P value cutoffs (Extended Data Fig. 5a). 

This decrease in FDR was also observed for automated selection of kg 
and kc (Extended Data Fig. 5b). We also observed reduced FDR when 
using TISSUE with gimVI gene expression predictions (Supplemen-
tary Fig. 1e). The TISSUE multiple imputation framework can also be 
extended to non-parametric hypothesis testing and to spatially vari-
able gene detection with SpatialDE52, resulting in similar reductions 
in FDRs when using predicted gene expression profiles as input, espe-
cially when the number of intended discoveries is low (Extended Data 
Fig. 5c,d). For example, TISSUE selectively detected spatially variable 
expression of Unc13c in the mouse primary visual cortex (P = 6.6 × 10−5 
for TISSUE SpatialDE on SpaGE predicted expression, P = 0.08 for 
SpatialDE on baseline SpaGE predicted expression), which encodes 
a protein that is linked to synaptic plasticity53 and neuroprotection 
in Alzheimer’s disease54 and has not been previously identified as a 
spatially variable gene in this brain region. TISSUE hypothesis testing 
was also reproducible across different replicates within the same spatial 
transcriptomics dataset (Extended Data Fig. 5e). As such, application 
of TISSUE hypothesis testing robustly guards against false discoveries 
when performing differential gene expression analysis with predicted 
spatial gene expression profiles.

To illustrate a specific use case of TISSUE hypothesis testing, we 
applied the method to an in situ sequencing (ISS) mouse primary visual 
cortex dataset. Using unbiased Leiden clustering, we identified several 
broad neuronal cell-type clusters along with specific nonneuronal 
cell-type clusters. We were unable to further resolve the neuronal cell 
clusters and used spatial gene prediction with SpaGE to predict the 
expression of additional neuronal subtype markers that were not in 
the original ISS gene panel. For one neuronal cluster, which localized 
to the dentate gyrus (DG) of the hippocampus (Fig. 3d), differential 
expression was detected across most neuronal subtype markers, but 
under TISSUE hypothesis testing, we observed that this cluster had 
selective differential expression of predicted marker genes associ-
ated with granule cells (Pdzd2, Gsg1l, Grp), which are concentrated in 
the DG of the hippocampus55, and no significant expression of other 
cell-type markers, including those for mossy cells (Calb2, Tm4sf1) and 
neural stem cells (Prom1, Sox9), which are other cell types found in the 
DG55, and those for other neuronal subtypes (Sst, Vip, Hcrt, Agrp, Pomc, 
Drd1, Tph2; Fig. 3e). The identification of this neuronal cell cluster as a 
granule cell cluster was confirmed by spatial localization of these cells 
to the hippocampal DG and by further confirmation with measured 
gene marker Lrrtm4, which encodes a protein that has been previously 
implicated with granule cell processes56. Under traditional differential 
expression testing with the predicted spatial gene expression values, 
we were unable to recover the same specificity for granule cell markers. 
We observed similar but reduced trends for Tangram prediction and 
lack of significance for any markers under Harmony prediction, likely 
due to the low performance of that model on this dataset (Fig. 1b) and 
suggesting that comparison of TISSUE differential expression results 
from multiple prediction methods is advantageous.

Uncertainty-aware downstream analyses with TISSUE
Supervised learning is a common practice with single-cell and spa-
tial transcriptomics data and can lead to useful models for predicting 
quantities of interest such as biological age57, cell cycle state58 and per-
turbational responses59. Similarly, cell clustering and visualization are 
commonly used to identify cell types in spatial transcriptomics data 
and intuitively understand high-dimensional differences between 
different groups. Substantial errors in spatial gene expression pre-
diction may adversely affect the performance of these downstream 
tasks when relying on the predicted gene expression profiles as input. 
Here we introduce TISSUE cell filtering as an approach for retrieving 
a high-quality subset of predictions to be used as input for improved 
downstream training and evaluation of supervised classification mod-
els, clustering of cells and data visualization via dimensionality reduc-
tion. TISSUE cell filtering involves ranking of cells by the magnitude of 
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uncertainty (that is, prediction interval width) for each gene, followed 
by automated filtering of cells with the highest uncertainty ranking 
within each class label (for example, cell type; Fig. 4a and Methods).

To compare the performance of TISSUE cell filtering to traditional 
approaches for downstream tasks, we generated synthetic spatial 
transcriptomics data using SRTsim51 with two distinct cell-type clusters 
where half of the profiled genes are higher in expression in one cell type 
(Methods). Predicted gene expression was simulated by selectively 

adding mix-in bias to a proportion of cells in one cell type such that 
the expression profiles of those cells resemble the ground truth of the 
other cell type, and zero-centered Gaussian prediction noise is added 
to all other cells (Methods and Fig. 4b). Under this simulation setting, 
supervised learning classification models trained and evaluated on 
TISSUE-filtered data generally outperformed classifiers trained and 
evaluated on unfiltered spatial transcriptomics data in separating the 
two cell groups across different levels of mix-in prediction bias and 
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using automated stratified grouping (Methods). Bands represent the range, 
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labels (one-versus-all approach) using the differentially expressed genes on the 
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under cross-validation (Fig. 4c). Similarly, clustering of cells (k-means 
with k = 2 on the top 15 principal components) using the TISSUE-filtered 
gene expression predictions resulted in higher-quality clustering than 

clustering of cells using the unfiltered gene expression predictions as 
evidenced by higher adjusted Rand index (ARI) with respect to the true 
cell clusters across different levels of mix-in prediction bias (Fig. 4d).
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To assess improvements in low-dimensional visualization of the 
data, we used DynamicViz60 to rigidly align cells by their top two prin-
cipal components across 20 independent simulations and observed 
that TISSUE-filtered visualizations were better able to separate the 
two cell groups while the unfiltered visualizations were unable to do 
so under 50% mix-in of the two cell groups (Fig. 4e). The DynamicViz 
variance score was also lower for the TISSUE-filtered visualization than 
for the unfiltered principal component analysis (PCA) visualization 
(median variance score of 0.198 compared to 0.381), indicating more 
stable visualization quality in the former, likely due to the improved 
representation of differences between the two cell-type clusters.

To assess improvements by TISSUE cell filtering on publicly avail-
able spatial transcriptomics datasets, we curated seven pairings of 
datasets and class labels (for example, cell type or anatomic region) and 
restricted our analyses to the three labels with greatest representation 
within each pairing. To evaluate supervised learning for classification, 
we compared the cross-validated performance of logistic regression 
models trained and evaluated on the TISSUE-filtered predicted spatial 
gene expression to the performance of logistic regression models 
trained and evaluated on the unfiltered predicted gene expression 
profiles. Across three different performance metrics (accuracy, area 
under the receiver-operator characteristic curve and F1 score), the 
TISSUE-filtered classifiers generally outperformed the unfiltered 
classifiers on prediction tasks (Fig. 4f), particularly for the osmFISH 
mouse somatosensory cortex dataset with region labels, where clas-
sification performance was comparable to that of models trained on 
the measured gene expression profiles (Fig. 4g). Similarly, clustering 
quality and visualization quality were generally improved by TISSUE 
cell filtering as evidenced by higher ARI with respect to the class labels 
and by higher linear separability of classes in low-dimensional PCA 
representations of the predicted gene expression, which was measured 

by fitting a support vector classifier with a linear kernel to the top 15 
principal components (Fig. 4f,h,i).

Across all tasks, TISSUE cell filtering provided similar improve-
ments when used with automated stratified grouping (Extended 
Data Fig. 6a–c), different prediction interval settings (Extended Data  
Fig. 6d,e) and gimVI predictions (Supplementary Fig. 1f). All bench-
marks for evaluating TISSUE performance are summarized in Sup-
plementary Table 2. For clustering and visualization tasks, we also 
considered an alternative framework to TISSUE cell filtering, where 
instead of filtering cells, we leveraged weighted principal component 
analysis (WPCA)61 with weights related to the inverse TISSUE prediction 
interval width for each gene expression prediction (Extended Data  
Fig. 7a and Methods). Using the TISSUE-WPCA approach to obtain prin-
cipal components improved linear separability between cell clusters on 
the synthetic datasets for a range of mix-in bias levels (Extended Data 
Fig. 7b,c) and improved clustering on several real spatial transcriptom-
ics datasets (Extended Data Fig. 7d).

TISSUE resolves cell types of the neural stem cell lineage
The subventricular zone (SVZ) neurogenic niche is located in the lat-
eral ventricles of the adult mammalian brain and is resident to neural 
stem cells that are important in homeostasis and for injury response 
and repair62–64. In addition to many other cell types, the SVZ contains 
cells of the neural stem cell lineage, which consists of neural stem cells 
(quiescent and activated subtypes), neural progenitor cells (NPCs) and 
neuroblasts, all of which have yet to be identified using spatial transcrip-
tomics of the mammalian brain. To test the ability of TISSUE to identify 
and characterize these cell types, we used MERFISH to profile the spa-
tial expression of 140 genes on two young adult mouse brain sections 
containing both lateral ventricles (Fig. 5a). We performed clustering 
on the data and using known marker genes, we identified several cell 
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types including astrocytes, endothelial cells, ependymal cells, micro-
glia, neurons, oligodendrocyte progenitor cells and oligodendrocytes, 
along with an ambiguous cell cluster that localized to the lateral ven-
tricles (Fig. 5a,b). Although the MERFISH gene panel contained several 
known transcriptomic markers for quiescent neural stem cells (qNSCs/
astrocytes), activated neural stem cells (aNSCs)/NPCs and neuroblasts 
(Methods), they were insufficient for resolving the ambiguous cell 
cluster further into these subtypes (Extended Data Fig. 8a). As such, we 
used SpaGE and a single-cell RNA-seq dataset of the adult mouse SVZ57 
to predict additional genes that were not present in the original panel, 
including general NSC and qNSC/astrocyte markers (Slc1a3, Nr2e1, 
Sox9, Vcam1, Hes5, Prom1, Thbs4), aNSC/NPC markers (Pclaf, H2ax, 
Rrm2, Insm1, Egfr, Prom1, Mcm2, Cdk1) and neuroblast markers (Stmn2, 
Dlx6os1, Igfbpl1, Sox11, Dlx1). After subclustering the ambiguous clus-
ter and then leveraging TISSUE multiple imputation and hypothesis 
testing, we observed differential expression of marker genes, which 
identified qNSC/astrocyte, aNSC/NPC and neuroblast cell clusters 
(Fig. 5c). In particular, TISSUE multiple imputation and hypothesis test-
ing was necessary to resolve the identity of the aNSC/NPC subcluster, 
which could not be resolved from the SpaGE-imputed expression values 
alone (Extended Data Fig. 8b). Similar TISSUE-specific improvements 
in identifying subclusters were observed for other spatial gene expres-
sion prediction methods, and only TISSUE methods could identify the 
aNSC/NPC subcluster (Extended Data Fig. 8c). Consistent with known 
biology of the SVZ, all three cell subtypes were found throughout both 
lateral ventricles (Fig. 5d) and the relative proportions of each sub-
type were similar between the right and left ventricles (Extended Data  
Fig. 8d). Additionally, there were slightly more neuroblasts than aNSCs/
NPCs in the MERFISH dataset, which is also reflected among several 
independent single-cell RNA-seq datasets of the adult mouse SVZ 
(Extended Data Fig. 8e)57,65,66.

Recent efforts have uncovered biological heterogeneity in neu-
ral stem cell populations between the dorsal and ventral regions of 
the SVZ67,68. However, these existing transcriptomic characteriza-
tions of the SVZ have relied on dissociated single-cell transcriptom-
ics data, thus precluding analyses involving the ground truth spatial 
location of the neural stem cells without resource-intensive regional 
micro-dissections. Using the spatial locations of cells determined via 
MERFISH imaging, we categorized cells into dorsal, ventral or other 
regional classes using horizontal boundaries (Extended Data Fig. 8f). 
Using TISSUE multiple imputation and hypothesis testing, we then 
performed whole-transcriptome differential gene expression on dor-
sal or ventral categories within each of the three subtypes. For each 
cell subtype, we selected the 20 most differentially expressed genes 
and trained penalized logistic regression models to predict dorsal or 
ventral regional origin from predicted spatial gene expression with or 
without TISSUE cell filtering. In all cell subtypes, the TISSUE-filtered 
models outperformed the baseline unfiltered models across several 
classification metrics including F1 score, accuracy, area under the 
receiver-operator curve and average precision (Extended Data Fig. 8g). 
Application of these TISSUE-filtered dorsal/ventral region classifiers 
to dissociated single-cell RNA-seq data may provide a useful first-step 
estimation of the regional origin of cells in the neural stem cell lineage 
without the need for laborious regional micro-dissections of the niche.

Discussion
We developed TISSUE to compute well-calibrated and context-specific 
measures of uncertainty for predicted spatial gene expression profiles. 
TISSUE provides general frameworks for leveraging uncertainty in 
downstream analysis such as differential gene expression analysis, clus-
tering and visualization, and supervised learning. These frameworks 
are flexible and can be adapted into existing spatial transcriptomics 
data analysis workflows. For example, the differential gene expression 
analysis approach can be adapted to other hypothesis tests, which we 
show for non-parametric two-sample tests and spatially variable gene 

detection (Extended Data Fig. 5c,d). Likewise, the principal components 
obtained from TISSUE cell filtering can be used for any downstream 
algorithms that utilize the reduced dimensionality representation 
of PCA as input. Finally, the TISSUE-based filtering of training and 
evaluation data for supervised learning strictly modifies the data 
in a model-agnostic manner and therefore can be extended to both 
training and deployment of any supervised learning model across 
both regression and classification tasks. TISSUE motivates the future 
development and benchmarking of uncertainty-aware versions of 
single-cell and spatial transcriptomics data analysis methods, such 
as for spatial domain detection69, embedding for label transfer70 and 
cross-modality transformation71.

As a case study, we applied TISSUE to predict the expression of 
additional cell-type markers in the adult mouse SVZ MERFISH dataset. 
TISSUE multiple imputation and hypothesis testing were then used 
to successfully annotate cell subtypes in the neural stem cell lineage, 
which, to our knowledge, constitute the first identification of these cell 
subtypes in spatial transcriptomics. In both the SVZ MERFISH dataset 
and in the primary visual cortex ISS dataset, TISSUE was necessary to 
uniquely identify ambiguous cell clusters, which was not possible using 
only the predicted gene expression. Together, these results indicate 
that TISSUE may serve as a promising framework for identifying new 
or previously unprofiled cell types in spatial transcriptomics data when 
the measured gene panel is insufficient.

TISSUE may have limited performance in contexts where spatial 
gene prediction patterns are not represented in the calibration set 
and for genes with extremely sparse expression patterns. Due to the 
assumptions underlying TISSUE, there may also be reduced perfor-
mance on rare cell types that are not spatially colocalized. Since TISSUE 
performance is dependent on the size and diversity of the calibration 
sets, the method will generally scale better to spatial transcriptomics 
datasets with many cells, many genes or uniform representation of cell 
types. Additional benchmarking with spatial transcriptomics data col-
lected on disease samples or other organs may further test the robust-
ness of TISSUE. The main computational burden imposed by TISSUE 
is the cross-validated prediction of gene expression on the calibration 
set, which is necessary for building context-specific uncertainties. The 
burden for computing cell-centric variability, calibration scores and 
prediction intervals is comparatively less than that for generating the 
initial predictions (Extended Data Fig. 9).

Although TISSUE has thus far been tested in the spatial transcrip-
tomics setting, the underlying assumptions can generalize to other spa-
tial data modalities, such as spatial proteomics. As other spatial omics 
technologies mature, we anticipate that TISSUE will find additional 
use in the prediction and quantification of uncertainty for enhanced 
spatial data analysis across multiple modalities.
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Methods
Preprocessing of datasets
We followed data preprocessing approaches from prior benchmark 
comparisons of spatial gene prediction methods7, which found high-
est predictive performance for these methods when non-normalized 
single-cell spatial transcriptomics data were paired with normalized 
single-cell RNA-seq data. The RNA-seq data were normalized using the 
Scanpy function pp.normalize_total() with its default settings followed 
by log transformation with an added pseudocount. We selected only 
genes expressed in at least 1% of cells in the RNA-seq data.

Prediction of spatial gene expression
General framework for spatial gene expression prediction. The 
spatial gene prediction problem involves paired data from spatial 
transcriptomics and RNA-seq that are approximately from the same 
tissue and organism. We denote the spatial transcriptomics data as 
X ∈ ℝn×p  and the RNA-seq data as Y ∈ ℝm×q, where rows are cells and 
columns are genes. Generally, spatial gene prediction considers the 
case where q > > p and the genes present in X are a subset of those in Y. 
A spatial gene prediction method predicts the expression of a gene 
that is present in Y but not in X for each cell in X using information from 
both X and Y.

Harmony. Harmony (as referred to in this work) involves joint embed-
ding of the spatial transcriptomics and RNA-seq data using the Har-
mony algorithm72 followed by k-nearest-neighbor averaging to 
calculate predicted expression values for each spatial cell based on its 
nearest neighbors in the RNA-seq data. We implemented the Harmony 
algorithm following the description outlined in previous applications10. 
We used default Harmony settings in the Scanpy external.pp.harmony_
integrate() implementation. We averaged across the ten nearest 
RNA-seq neighbors for each spatial cell using the first min{30,p}   
Harmony principal components.

SpaGE. SpaGE performs spatial gene prediction using a two-step 
approach consisting of alignment using the domain adaptation algo-
rithm PRECISE17 and then performing k-nearest-neighbor regression8. 
We used a local download of the SpaGE algorithm available at https://
github.com/tabdelaal/SpaGE/ with a version corresponding to a down-
load date of 19 July 2022. We set the number of principal vectors in 
SpaGE equal to 20 if p < 40 and to min{n,p}/2 rounded to the nearest 
integer if p ≥ 40 and otherwise used the default settings.

Tangram. Tangram uses a deep learning framework to create a map-
ping for projecting RNA-seq gene expression onto space13. We followed 
preprocessing details for Tangram (1.0.3) according to previous bench-
marks7, which consisted of Leiden clustering on the scaled highly varia-
ble genes in the spatial data using Scanpy methods with default settings 
unless otherwise specified: pp.highly_variable_genes(), pp.scale() with 
max_value = 10, tl.pca(), pp.neighbors() and tl.leiden() with resolu-
tion = 0.5. After preprocessing, the identified clusters were used by 
Tangram to project the RNA-seq cells onto space using map_cells_to_
space() with mode = ‘clusters’ and density_prior = ‘rna_count_based’ 
and project_genes() with default settings.

gimVI. The gimVI algorithm uses deep generative modeling to impute 
spatial transcriptomics from paired single-cell RNA-seq data12. We 
used raw counts for both RNA-seq data and spatial transcriptomics 
data as input for the gimVI model and, unless otherwise specified, we 
used default settings for gimVI (0.20.3) training and prediction. Due 
to existing computational issues with gradients in the gimVI model, 
we were only able to extend TISSUE to gimVI for six dataset pairings, 
of which five are benchmark datasets. In some cases, several modifica-
tions had to be made to apply gimVI successfully. Instead of the default 
zero-inflated negative binomial generative distribution for the RNA-seq 

data, we used a Poisson distribution for the mouse prefrontal cortex 
(STARmap) dataset, Drosophila embryo (FISH) dataset and human 
U2OS (MERFISH) dataset. We used a negative binomial generative 
distribution for RNA-seq data for the mouse gastrulation (seqFISH) 
dataset, axolotl brain (Stereo-seq) dataset and adult mouse SVZ (MER-
FISH) dataset. Instead of the standard 10-fold cross-validation within 
TISSUE and for evaluating TISSUE, we used 3-fold cross-validation for 
the mouse gastrulation (seqFISH) dataset and 5-fold cross-validation 
for the adult mouse SVZ (MERFISH) dataset.

Calibration scores for spatial gene expression prediction
Modifications to standard conformal inference framework. Confor-
mal inference provides a framework for developing rigorous prediction 
intervals for predictions made from machine learning models. We 
extend this framework to construct prediction intervals for predicted 
gene expression values in spatial transcriptomics. To adapt this frame-
work, we made the following key modifications and additions to the tra-
ditional theory: (1) defining a scalar measure of uncertainty (cell-centric 
variability) that utilizes spatial context and can be measured in a single 
pass of any spatial gene expression method; (2) translating from the 
supervised learning setting to the unsupervised setting for spatial 
gene expression prediction, which includes using the entire spatial 
transcriptomics data for calibration; (3) calculating fine-resolution 
prediction intervals at the level of cell–gene combinations instead of 
general uncertainties for a given gene or a given cell; (4) calculating 
asymmetric prediction intervals that are more suitable to RNA count 
data; (5) building custom calibration of uncertainties with hierarchi-
cally stratified groupings consisting of combinations of genes and 
cells; (6) designing uncertainty-aware methods and algorithms for 
using TISSUE prediction intervals and uncertainties for a variety of 
downstream data analysis tasks.

Cross-validated spatial gene expression prediction. To compute 
calibration scores, we obtained estimated gene expression predictions 
on genes that are already measured in the spatial transcriptomics data. 
This is achieved through a cross-validation approach where a subset of 
the genes in the spatial transcriptomics data are left out and the gene 
prediction method is fitted to the remaining genes to make predictions 
on the left-out subset of genes (that is, calibration genes). In practice, 
we used 10-fold cross-validation to obtain predictions for all genes in 
the spatial transcriptomics data but the TISSUE implementation pro-
vides options to customize the cross-validation procedure according 
to user specifications.

Cell-centric variability. We outline three desiderata to guide the devel-
opment of a scalar uncertainty measure for spatial gene prediction:

	1.	 To ensure computational scalability, the measure can be calcu-
lated on a single set of predicted gene expression values.

	2.	 To accurately measure heterogeneity in prediction perfor-
mance, the measure provides specific values for any cell  
and gene.

	3.	 The measure ideally leverages spatial and gene expression 
similarity information.

We introduce the cell-centric variability to satisfy these desiderata. Spe-
cifically, for a cell i and gene j, the cell-centric variability Uij is computed 
according to equations (1) and (2) using cells in its local neighborhood 
Ni. We defined cell neighborhoods as the 15 nearest cells by Euclid-
ean distance for each cell using squidpy.gr.spatial_neighbors()73, and 
removed outliers by subsequently excluding neighbors with distance 
greater than Q3 + 1.5 × (Q3 − Q1), where Q3 and Q1 are the third and first 
quartiles of neighbor distances across all cell neighborhoods, respec-
tively. We used this approach for defining cell neighborhoods for all 
experiments because it did not require gene expression information 
and thus could be generalized to unseen genes; was approximately 
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spatially scale-invariant such that in all 11 spatial transcriptomics data-
sets, 15 neighbors was between the average 1-hop and 2-hop neighbor-
hood size for a Delaunay triangulation mesh graph of the cells; ensured 
a sufficiently high number of cells to compute the cell-centric vari-
ability reliably; and ensured a relatively fixed number of cells in each 
cell neighborhood such that cell-centric variability estimates could be 
comparable across different cells and different contexts.

The intercept term in equation (1) is included to ensure 
well-defined calibration scores and nonzero prediction interval widths 
for cells with no differences in gene expression across its neighbor-
hood, which can result from the high sparsity of single-cell transcrip-
tomics data. The weights Wik in equation (2) are used to impose a soft 
weighting of the cell-centric variability for similar neighboring cells 
(that is, of the same cell type) over dissimilar neighboring cells (that 
is, of different cell types) without the need for user specification of 
discrete cell-type clusters. Current weights are based on the cosine 
similarity between gene expression of neighboring cells, but alterna-
tive definitions of weights based on distances in lower-dimensional 
embedding of gene expression may be advantageous when the 
dimensionality of the spatial transcriptomics dataset is high. The 
cell-centric variability can be computed for all cells and genes in both 
the calibration set (genes in the spatial transcriptomics data) and 
evaluation and test sets (genes to be predicted that are not in the spatial  
transcriptomics data).

Calculation of calibration scores from variability measure. To link 
the cell-centric variability to the prediction error, we compute the 
calibration score as shown in equation (3). We compute calibration 
scores for all pairs of cells and genes in the calibration set (that is, 
present in spatial transcriptomics data) and allocate them to their 
corresponding stratified groups (see below for details). Calibration 
scores are further separated by the sign of Xij − ̂Xij  to construct non-
symmetric uncertainty bounds around the predicted expression value 
with Xij > ̂Xij  designating inclusion in the calibration scores set for the 
upper interval and Xij < ̂Xij  designating inclusion in the calibration 
scores set for the lower interval.

Stratified cell and gene grouping for calibration scores. In addi-
tion to context-specific construction of calibration scores, TISSUE 
can also provide finer groupings of genes and cells, each with their 
own calibration score sets. These stratified groupings are specified 
by the number of gene groups kg and the number of cell groups kc for 
a total of kg × kc groups. Stratified grouping is performed for genes 
first through k-means clustering with k = kg of the genes on the first 15 
principal components representing the transposed predicted gene 
expression matrix. Then, within each of the identified gene strata, we 
performed further k-means clustering with k = kc of the cells on the first 
15 principal components representing the predicted gene expression 
matrix restricted to genes present in that stratum.

Since there is no guarantee that all stratified groups will contain 
genes in the calibration set or that all stratified groups will have an 
adequate number of scores for calibration, for stratified groups with 
less than 100 scores in either the upper interval or lower interval cali-
bration score sets, we defaulted the calibration score set to the union 
of all calibration score sets across all stratified groups. To assess how 
representative the calibration set is for each stratified group, TISSUE 
includes options to measure the Wasserstein distance between the 
cell-centric variability of a group and that of the subset of genes in its 
calibration set.

TISSUE also includes an option (‘auto’) for automated selection 
of the stratified grouping parameters. The automated selection is 
achieved by first performing an increasing line search of integer kg > 1 
values and then performing k-means clustering of cells on the trans-
posed predicted gene expression matrix. Finally, we compute the 
silhouette score on the identified clusters and increment kg until the 

silhouette score decreases and then set kg equal to the value at which 
maximum silhouette score was achieved. Then, we perform a similar 
incremental line search for kc > 1, use k-means clustering of genes 
on the predicted gene expression matrix and return the kc value for 
maximum silhouette score after the same early stopping as described  
previously.

Conformal prediction intervals
Retrieval of prediction intervals from calibration scores. For a given 
confidence level α, we construct the prediction interval with approxi-
mate probability coverage (1 − α) by retrieving the ⌈(n+1)(1−α)⌉n  –th quan-
tiles of the upper interval calibration scores and lower interval 
calibration scores. Referring to these quantiles as q(u)α  and q(l)α , respec-
tively, the nonsymmetric conformal prediction interval for the pre-
dicted gene expression of cell i and gene j can be computed according 
to equation (4):

Iij = [ ̂Xij − Uij ⋅ q(l)α , ̂Xij + Uij ⋅ q(u)α ] (4)

As this prediction interval does not explicitly depend on the measured 
prediction error, it can be calculated for all predicted gene expression 
values, even if the gene was not originally present in the calibration set.

Coverage guarantee for TISSUE prediction intervals. Under regular-
ity conditions, the conformal inference framework provides consistent 
symmetric prediction intervals when applied to scalar uncertainty 
measures such as cell-centric variability40. Building on that result, we 
show that this consistency is still valid with the nonsymmetric predic-
tion intervals that we compute using TISSUE.

Proposition 1. Let {X[∶, j]}j∈[1,…,p,test]  be independent and identically 
distributed from some distribution, then P (Xij ∈ [lij,uij]) ≥ 1 − α  for any 
confidence level 0 ≤ α ≤ 1, where lij and uij are the quantiles of the lower 
and upper calibration score sets corresponding to Xij, respectively.

Here, ‘test’ refers to the index or set of indices for predicted genes 
that are not in the measured spatial transcriptomics data. Using the 
notation lij = ̂Xij − Uij ⋅ q(l)α  and uij = ̂Xij + Uij ⋅ q(u)α , the coverage of the TIS-
SUE prediction interval for some confidence level α can be represented 
according to equation (5):

P (Xij ∈ [lij,uij]) = P (Xij ∈ [lij, ̂Xij]) + P (Xij ∈ [ ̂Xij,uij])

= P (Xij ∈ [lij, ̂Xij]|Xij < ̂Xij)P (Xij < ̂Xij)

+P (Xij ∈ [ ̂Xij,uij]|Xij > ̂Xij)P (Xij > ̂Xij)

≥ (1 − α) (P (Xij < ̂Xij) + P (Xij > ̂Xij))

≥ 1 − α,

(5)

with the first inequality following from theorem 1 of ref. 40. And thus, 
given that symmetric intervals provide proper coverage40, then we 
are also guaranteed proper coverage with the asymmetric prediction 
intervals produced by TISSUE, which is further evident through the 
empirical coverage assessment for TISSUE (Fig. 2f). This guarantee 
extends to the stratified group setting for kg > 1 and/or kc > 1 (see propo-
sition 2 in ref. 40).

Evaluation of prediction intervals. We evaluate the empirical cover-
age of the prediction intervals using 10-fold cross-validation splits of 
the genes in the spatial transcriptomics data into a calibration set and 
an evaluation set. We leave out the evaluation set and use the calibra-
tion set to compute calibration scores. Then, using these calibration 
scores, for every value of α, we compute TISSUE prediction intervals 
for all cells and genes in the evaluation set. We then compute empiri-
cal coverage of the TISSUE prediction intervals, which is defined as 
the fraction of measured gene expression values in the evaluation set 
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that fall within their respective TISSUE prediction interval across all 
cells and genes (Fig. 2f and Extended Data Fig. 4e) or across all cells for 
each individual gene with nonzero predicted and measured expres-
sion (Extended Data Fig. 4d). Well-calibrated coverage of TISSUE pre-
diction intervals are indicated by close equivalence of the empirical 
coverage (‘fraction within prediction interval’) and the theoretical 
coverage (‘specified TISSUE coverage’). For datasets with a small 
number of cells, there will likely be worse calibration for choices of 
α that are very close to either 0 or 1 due to sparse calibration sets for  
those values.

We measured the ‘calibration error’ by measuring the area between 
the difference of the empirical calibration curve and the theoretically 
optimal calibration curve. Numerically, this involved computing the 
absolute difference between the empirical coverage and the theoreti-
cal coverage at each alpha value and then estimating the absolute area 
under this difference curve using the trapezoidal rule with default 
implementation of numpy.trapz().

Sprod denoising and alternative cell similarity graph. To investi-
gate the effect of denoising on TISSUE calibration performance, we 
used Sprod to preprocess the mouse somatosensory cortex osmFISH 
dataset to yield a ‘denoised’ version and this was used in place of the 
original dataset in TISSUE calibration. We used the pseudo-image 
option in Sprod because the corresponding images for the dataset 
were not publicly available. All TISSUE settings were kept identical to 
the settings for the original analyses.

To investigate the effect of other cell similarity graphs on TISSUE 
calibration, we used the cell similarity graph constructed by Sprod 
in the output file ‘sprod_Detected_graph.txt’ in place of the default 
cosine similarity graph constructed by TISSUE. To ensure connec-
tivity, we added the identity matrix to the Sprod cell similarity adja-
cency matrix, and otherwise kept all TISSUE settings at their default  
settings.

Uncertainty-aware hypothesis testing
Generating multiple imputations using calibration scores. We 
introduce a multiple imputation procedure for performing 
uncertainty-aware hypothesis testing for predicted spatial gene expres-
sion. Multiple imputations are generated by uniformly sampling  
calibration scores from the corresponding union of upper and lower 
interval calibration score sets for each predicted spatial gene 
expression value. Given a uniform random sample of such calibration 
scores, S(d) ∈ ℝn×p , we compute an alternative imputation given by 
equation (6):

̂X(d) = ̂X + δu/l,(d) × S(d) × U (6)

where ‘×’ denotes element-wise multiplication, U ∈ ℝn×p  is equal to  
the cell-centric variability measures computed on ̂X , and δu/l = 1 if the 
score was sampled from the upper interval set and δu/l = −1 if the score 
was sampled from the lower interval set. This sampling is repeated D − 1 
times to generate D multiple imputations including the original imputa-
tion ̂X . We tempered the multiple imputations against outliers by 
restricting the sampling to the scores within the set corresponding to 
the 80% conformal prediction interval.

Modified two-sample t-test for multiple imputation. After generat-
ing D multiple imputations from the calibration scores, we performed 
hypothesis testing using a modified two-sided, two-sample t-test. 
Consider two groups with sets of sample/cell indices A and B. Then, 
the mean difference and variance under normal two-sample t-test for 
a single imputation are given by equations (7) and (8):

μd =
1
nA

∑
i∈A

̂X
(d)
i,∶ − 1

nB
∑
i∈B

̂X
(d)
i,∶ (7)
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⎝
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⎠
,
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where ̂X
(d)

 denotes the d-th imputation among the D multiple imputa-
tions. Extending these statistical measures to the multiple imputation 
case, we use the standard modification for multiple imputation47–49,74, 
which results in the following mean and variance according to equa-
tions (9) and (10):

μMI =
1
D

D
∑
d=1

μd (9)

s2MI = s
2
W + (1 + 1

D ) s
2
B (10)

where s2W  is the within-imputation variance and s2B  is the 
between-imputation variance, computed according to equations (11) 
and (12):

s2W = 1
D

D
∑
d=1

s2d (11)

s2B =
1

D − 1

D
∑
d=1

(μd − μMI)
2. (12)

Then, the modified test statistics for the two-sample t-test is given by 
equation (13):

̃tMI =
μMI

√s2MI
, (13)

which is t-distributed with degrees of freedom (D − 1)(1 + Ds2W
(D+1)s2B

)
2

 and 

the resulting probability can be interpreted as the posterior probability 
of a significant difference in means between the two groups accounting 
for both evidence of this effect and the reliability of the imputations 
by inflating the standard error for this effect47. Under some regularity 
assumptions (approximate normality of imputed values and missing 
at random), the multiple imputation approach produces consistent 
estimates48,49.

Empirical evaluation of TISSUE hypothesis testing. For each dataset, 
TISSUE hypothesis tests were computed using 10-fold cross-validation. 
In each cross-validation fold, we generated TISSUE spatial gene expres-
sion predictions and calibration scores on the calibration genes. 
Then, statistics for the TISSUE hypothesis test were computed for the 
held-out genes. This procedure is repeated across all folds to accrue 
statistics for all genes in the dataset. For TISSUE multiple imputation 
t-test and Wilcoxon test frameworks, we used 100 multiple imputations 
in each hypothesis test. For TISSUE multiple imputation SpatialDE 
framework, we used 10 multiple imputations in each hypothesis test 
due to the longer computational run time for SpatialDE. To evaluate the 
performance of TISSUE hypothesis testing, we applied the underlying 
tests (for example, t-test, Wilcoxon/Mann–Whitney, SpatialDE) to the 
measured spatial gene expression values of the held-out genes to obtain 
‘ground truth’ statistics. Using these ground truth observations, we 
then benchmarked the discoveries made by TISSUE hypothesis tests 
against the discoveries made by the underlying tests directly applied 
on the predicted spatial gene expression values without TISSUE.

Alternative TISSUE hypothesis tests. To extend the multiple imputa-
tion testing framework to non-parametric two-sample tests, TISSUE can 
perform one-sided Wilcoxon/Mann–Whitney tests for ‘greater than’ 
or ‘less than’ comparisons between two multiply imputed samples.  
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For these tests, we use the scipy.stats.mannwhitneyu() implementation 
with either alternative = ‘greater’ or alternative = ‘less’ options. In a 
similar way, TISSUE can be extended to spatially variable gene detec-
tion methods such as SpatialDE52, which provide P values as a measure 
of statistical significance of spatially variable expression. We use the 
standard implementation and transform the input to log-normalized 
counts before running SpatialDE.

The implementation of these frameworks is identical to the TIS-
SUE multiple imputation t-test with the exception of using a different 
rule in combining inference across multiple imputations50. In this 
approach, we obtain P values of independent hypothesis tests (that 
is, one-sided Wilcoxon/Mann–Whitney test between two samples or 
SpatialDE across all cells with spatial coordinates) on each of m impu-
tations, {p1, …, pm}. Then, we transform the P values to approximate 
normality, { ̃p0,… , ̃pm}, and combine these transformed values with 

zMI = ( 1
m
∑m
i=1 ̃pi)/√1 + Var { ̃p0,… , ̃pm} . Finally, we transform the 

combined value back to the original scale to obtain a multiply imputed 
P value estimate, pMI

50. The transformation and inverse transformation 
are achieved in practice with scipy.stats.norm.ppf() and scipy.stats.
norm.cdf(), respectively. Notably, this alternative approach involves 
running m independent hypothesis tests and is less computationally 
efficient than the multiple imputation t-test, which performs an aggre-
gate test at the end of the procedure.

Due to computational constraints, we were only able to evaluate 
the Wilcoxon/Mann–Whitney framework on four of the seven labeled 
datasets, and we were only able to evaluate the SpatialDE framework on 
two small datasets, which were unlabeled since SpatialDE uses spatial 
coordinates of the cells for testing.

Simulated data for differential gene expression analysis
We generated synthetic data using SRTsim51 for comparing the TISSUE 
uncertainty-aware hypothesis testing approach against traditional 
hypothesis testing. We used the reference-free SRTsim framework 
and generated a synthetic counts matrix using their native Shiny app. 
The data consist of two cell groups, referred to as ‘A’ and ‘B’, which 
were determined by manual drawing of a linear boundary between 
two spatial domains in the SRTsim Shiny application. In this setup, 
the separation is artificial with no simulated expression differences 
between the two groups. There are 465 ‘A’ cells and 515 ‘B’ cells for a 
total of 980 cells. To generate counts, we followed the default SRTsim 
recommendations and used the zero-inflated negative binomial model 
and set the zero proportion to 0.05, dispersion to 0.5 and mean to 2. 
We simulated 1,000 genes, where there was no systematic difference 
in expression of any gene between cell group ‘A’ and cell group ‘B’. We 
used a random seed of 444 for SRTsim.

To simulate prediction bias for cells under condition ‘B’, we added 
shifted Gaussian noise (mean equal to μ ≥ 0, variance equal to one) to 
half of the genes for all cells in condition ‘B’. Standard Gaussian noise 
was added to the other simulated expression values (that is, all cells and 
genes in group ‘A’ and the other half of genes for group ‘B’). This simula-
tion results in prediction errors that artificially produce a difference 
in predicted expression between the two groups for half of the genes 
despite the absence of any true expression differences in the original 
simulated data. For the main experiments, we varied the prediction 
bias parameter μ. We used random seeds of 444 in all sampling steps.

Metadata annotation for spatial transcriptomics datasets
For annotating cell types in the mouse hippocampus seqFISH dataset, 
we preprocessed the data using a standard Scanpy pipeline. Starting 
with the counts matrix, we normalized the data using pp.normalize_
total() with default settings, log-transformed the data using pp.log1p() 
and scaled the data with pp.scale(). We computed principal compo-
nents and a neighbors graph using tl.pca() followed by pp.neighbors() 
with 20 principal components. Finally, we performed Leiden clustering 

using tl.leiden() with resolution of 0.3, which yielded 5 cell clusters. We 
used tl.rank_genes_groups() with the Wilcoxon method to identify the 
top five marker genes for each cell cluster and manually identified the 
clusters using those markers. In total, we identified endothelial cells, 
oligodendrocytes, astrocytes and 2 neuron clusters.

For annotating cell types in the mouse primary visual cortex 
MERFISH dataset, we preprocessed the data using a standard Scanpy 
pipeline. Starting with the counts matrix, we normalized the data using 
pp.normalize_total() with default settings, log transformed the data 
using pp.log1p() and scaled the data with pp.scale(). We computed 
principal components and a neighbors graph using tl.pca() followed by 
pp.neighbors() with 20 principal components. Finally, we performed 
Leiden clustering using tl.leiden() with resolution of 0.1, which yielded 
11 cell clusters. We used tl.rank_genes_groups() with the Wilcoxon 
method to identify the top five marker genes for each cell cluster and 
manually identified the clusters using those markers. In total, we identi-
fied endothelial cells, oligodendrocytes, astrocytes, and 8 neuron-like 
cell clusters.

For annotating anatomic regions in the Drosophila embryo data-
set, we used the same preprocessing procedure as for the mouse pri-
mary visual cortex MERFISH dataset. We identified 7 Leiden clusters 
and grouped them into four region labels based on their spatial locali-
zation with 2 ‘posterior’ clusters, 1 ‘anterior’ cluster, 1 ‘bottom’ cluster 
and 3 ‘middle’ clusters.

We retrieved annotated class labels from publicly available 
metadata for the mouse somatosensory osmFISH dataset, mouse 
gastrulation seqFISH dataset and axolotl telencephalon Stereo-seq 
dataset. For the mouse somatosensory osmFISH dataset, we retrieved 
both anatomic region (‘region’) and cell-type (‘ClusterName’) labels 
from the metadata available at http://linnarssonlab.org/osmFISH/
osmFISH_SScortex_mouse_all_cells.loom. For the mouse gastrulation 
seqFISH dataset, we retrieved cell-type (‘celltype_mapped_refined’) 
labels from the metadata available at https://content.cruk.cam.ac.uk/
jmlab/SpatialMouseAtlas2020/ in the metadata.Rds file for ‘embryo1’ 
and ‘z5’. For the axolotl telencephalon Stereo-seq dataset, we retrieved 
cell-type (‘annotation’) labels from the metadata available at https://
db.cngb.org/stomics/artista/ for the Stage44.h5ad object file.

Replicate analysis for mouse gastrulation seqFISH dataset
To examine the reproducibility of TISSUE quantities across spatial 
transcriptomics replicates, we curated a replicate of the mouse gas-
trulation seqFISH dataset36, which has not been previously included 
in benchmarking analyses for spatial gene expression prediction7. We 
mapped cell-type (‘celltype_mapped_refined’) labels from the metadata 
available at https://content.cruk.cam.ac.uk/jmlab/SpatialMouseAt-
las2020/ in the metadata.Rds file for ‘embryo1’ and ‘z2’. For replication 
experiments, we utilized identical settings for TISSUE calibration, pre-
diction interval calculation and differential gene expression analysis 
as was used for the original dataset analysis.

Simulated data for downstream analyses
We generated synthetic data using SRTsim51 for benchmarking TISSUE 
cell filtering and TISSUE-WPCA approaches for improved performance 
on downstream analysis tasks. We used the reference-free SRTsim 
framework and generated a synthetic counts matrix using their native 
Shiny application. The data consist of two cell groups, referred to as ‘A’ 
and ‘B’, which were determined by manual drawing of a linear boundary 
between two spatial domains in the SRTsim Shiny application. There 
are 476 ‘A’ cells and 504 ‘B’ cells for a total of 980 cells. To generate 
counts, we followed the default SRTsim recommendations and used 
the zero-inflated negative binomial model and set the zero proportion 
to 0.05, dispersion to 0.5 and mean to 2. We simulated 1,000 genes, 
consisting of 500 positive signal genes and 500 noise genes, where the 
positive signal genes had an average log fold change that was double 
in ‘B’ cells than in ‘A’ cells. We used a random seed of 444 for SRTsim.
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To simulate prediction bias for cells in cell type ‘A’, we randomly 
sampled a proportion of cells in the ‘A’ group specified ‘mix-in’ propor-
tion parameter, and then for each gene and selected cell, we updated 
their expression level with a random uniform sample of ‘B’ cell expres-
sion levels for that gene. For the sampled cells, this simulated predic-
tion bias shifts their predicted gene expression profiles to be more 
similar to those of cell type ‘B’ rather than cell type ‘A’. Finally, standard 
Gaussian noise was added to all other expression values for both cell 
types to simulate prediction noise. We used random seeds of 444 in 
all sampling steps.

Uncertainty-aware cell filtering for downstream tasks
Using the TISSUE prediction interval, we performed filtering of 
high-uncertainty cells (referred to as TISSUE cell filtering) to improve 
training/evaluation of supervised learning models, clustering and 
data visualization. We approximate the prediction uncertainty using 
the width of the 67% prediction interval (equivalent to the asymmetric 
standard error). Then, we convert all uncertainty values to z scores 
using the mean and standard deviation of expression for each gene 
in the data. For each cell, we assign a score equal to the average of its z 
scores across all genes. The cells with the highest scores are removed 
from the filtered data. The threshold for removal is automatically deter-
mined using Otsu’s method, which finds a threshold that maximizes the 
variance between the filtered and unfiltered score sets. In the context of 
classification, we avoid inter-class differences in prediction uncertainty 
by performing this filtering procedure independently within each class.

Evaluation of TISSUE cell filtering for downstream tasks
We used several evaluation metrics to quantify the improvement of 
TISSUE cell filtering over using the predicted gene expression (base-
line) for a variety of common downstream analysis tasks. To ensure 
relatively balanced representation of classes, we used dataset and 
class label pairs that were restricted to the three classes with greatest 
prevalence. To generate the initial predicted spatial gene expression, 
we iteratively made predictions on held-out folds of genes using one 
of the specified prediction methods and with 10-fold cross-validation 
(see ‘Cross-validated spatial gene expression prediction’ for further 
details). For supervised learning (classification), we performed 5-fold 
cross-validation where TISSUE cell filtering was applied independently 
on each train and test split. Within each fold, we fitted a logistic regres-
sion model on the train set using sklearn.linear_model.LogisticRe-
gression() with penalty = ‘l1’ and solver = ‘liblinear’. The model was 
evaluated on the test set and the classification accuracy, area under the 
receiver-operator curve and macro F1 score were computed. These per-
formance metrics were then averaged across the five folds. For cluster-
ing and visualization, we applied TISSUE cell filtering to the predicted 
gene expression data and then performed standardization and PCA on 
the filtered data. For clustering, we then used k-means clustering with 
k = 3 on the top 15 principal components of the TISSUE-filtered data 
and measured clustering quality using the ARI with sklearn.metrics.
adjusted_rand_score(). For visualization, we then fit a support vector 
classifier on the top 15 principal components of the TISSUE-filtered data 
using sklearn.svm.SVC() with kernel = ‘linear’ and random_state = 444, 
and measured the accuracy of separation of classes, which we refer to 
as linear separability. For comparison, we repeated each of these pro-
cedures for the unfiltered/baseline predicted gene expression. These 
assessment procedures were applied independently for each spatial 
gene expression prediction method (Harmony, SpaGE and Tangram) 
within each dataset.

Dynamic visualization of principal components
We generated dynamic visualizations of the first two principal com-
ponents for visual comparison of PCA on the measured spatial gene 
expression, PCA on the predicted spatial gene expression and PCA 
on the TISSUE-filtered predicted spatial gene expression. We used 

DynamicViz (v.0.0.3) to center and rigidly align the cells across 20 
two-dimensional PCA visualizations of the simulated datasets and 
visualized the resulting alignments using dynamicviz.viz.stacked(). 
Alignment was achieved on the subset of cells that overlapped between 
the reference and target visualizations for the TISSUE-filtered data. 
Robust visualizations can be consistently aligned across different 
replicates. We scored the variability of the resulting visualization by 
computing variance scores for each cell using dynamicviz.score.vari-
ance() with method = ’global’.

Weighted PCA for uncertainty-aware tasks
As an alternative to TISSUE cell filtering, we implemented a weighted 
version of PCA where each value in the gene expression matrix is 
assigned a scalar weight. We computed the weights according to the 
following steps. First, we compute the inverse of the TISSUE prediction 
interval width (that is, 67% prediction interval upper bound minus 
lower bound). Then, we normalize these values for each gene by the 
mean value across that gene to correct for expression level differences 
between genes. Finally, we binarize these normalized values so that the 
top 80% of normalized values will have 10-fold higher relative weight 
than the bottom 20% of normalized values. These binary values are used 
as weights for WPCA. Alternatively, we have also implemented a weight-
ing scheme where we simply take the log transform of the normalized 
inverse prediction interval widths, which provides comparable perfor-
mance to the previously described weighting scheme (Extended Data 
Fig. 7c). WPCA directly decomposes the weighted covariance matrix 
to obtain principal vectors, and then applies weighted least-squares 
optimization to retrieve the principal components61. We used the 
implementation of WPCA in the wpca (v.0.1) Python package with 
default settings and weights set according to our specification. The 
TISSUE implementation of WPCA is customizable with user options 
for specifying different weighting parameters.

Sample preparation and processing for MERFISH on SVZ
A healthy 3-month-old male C57BL/6 mouse was obtained from the 
National Institute on Aging Aged Rodent colony. The mouse was habitu-
ated for at least 2 weeks at Stanford University before use. It was housed 
at the ChEM-H/Neuroscience Vivarium at Stanford University and 
their care was monitored by the Veterinary Service Center at Stanford 
University under the Institutional Animal Care and Use Committee 
protocol 8661.

The mouse was euthanized in a carbon dioxide chamber in the 
morning. The whole brain was dissected and immediately embedded 
in ice-cold Tissue-Tek OCT compound in a cryomold and placed on 
dry ice. Once the sample was frozen, it was transferred and stored at 
−80 °C. The sample was shipped to Vizgen in dry ice for processing. At 
Vizgen, the brain was sectioned to obtain coronal sections of the SVZ 
followed by MERFISH laboratory service, transcript count detection 
and cell segmentation and allocation of counts to individual cells. The 
MERFISH dataset includes two consecutive coronal sections.

We curated a 140-gene panel for the MERFISH experiment. The 
panel included 2–5 known transcriptomic cell-type markers for each 
of aNSC/NPCs, qNSC/astrocytes, neuroblasts, microglia, endothelial 
cells, oligodendrocytes, T cells, mural cells, ependymal cells, neurons, 
macrophages and reactive astrocytes57,65. Markers for aNSC/NPCs were 
Hmgb2, Hmgn2, Ccnd2 and Sox2; markers for qNSCs/astrocytes were 
Aldoc, Clu, Mt3, Gfap and Id4; markers for neuroblasts were Tubb2b, 
Sox4, Tubb3 and Dcx. The remaining genes in the panel were related 
to neurogenesis, T cell activity, glycolysis, lipid metabolism and aging.

Data processing for MERFISH dataset of SVZ
The MERFISH dataset was cropped to around the left and right lateral 
ventricles using rectangular bounding boxes. The raw counts were 
normalized by the volume of the cell segmentation. To remove doublets 
and segmentation artifacts, we filtered out the top 2% and bottom 
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2% of cells by total normalized expression. For initial clustering and 
visualization of the data, we further normalized total expression of 
all cells to 250 (scanpy.pp.normalize_total() with target_sum = 250), 
log-transformed with an added pseudocount (scanpy.pp.log1p()) 
and scaled to z scores (scanpy.pp.scale() with max_value = 10). We 
performed PCA using scanpy.tl.pca(), built a neighbors graph with 
scanpy.pp.neighbors(), obtained UMAP visualization with scanpy.
tl.umap(), and performed Leiden clustering with scanpy.tl.leiden() 
with a resolution of 0.5. Using visualizations of the cell-type markers 
in the MERFISH gene panel along with differential expression analysis, 
we manually identified nine cell-type clusters including two neuron 
clusters, astrocytes, oligodendrocytes, endothelial cells, ependymal 
cells, microglia, oligodendrocyte progenitor cells and an ambiguous 
cell-type cluster that localized to the lateral ventricles. We further 
subclustered the ambiguous cell cluster using the same Leiden cluster-
ing restricted to cells in this cluster and recovered three subclusters. 
For spatial region labels, we manually selected vertical coordinate 
cutoffs that corresponded to dorsal and ventral regions outlined in 
previous studies67.

Subcluster identification for MERFISH dataset of SVZ
To assist in the identification of the ambiguous cell cluster, we used 
TISSUE to obtain uncertainty-aware SpaGE spatial gene expression 
predictions for additional cell-type marker genes that were not in 
the 140-gene MERFISH panel. These included general NSC and qNSC/
astrocyte markers (Slc1a3, Nr2e1, Sox9, Vcam1, Hes5, Prom1, Thbs4), 
aNSC/NPC markers (Pclaf, H2ax, Rrm2, Insm1, Egfr, Prom1, Mcm2, Cdk1) 
and neuroblast markers (Stmn2, Dlx6os1, Igfbpl1, Sox11, Dlx1). For pre-
diction, we used a single-cell RNA-seq dataset of the micro-dissected 
mouse SVZ57. To perform differential expression analysis, we used 
the TISSUE multiple imputation framework to perform two-sample 
t-tests to compare the expression of each predicted gene in one of 
the ambiguous subclusters to all other ambiguous subclusters. Final 
cell-type identifications were made by considering the markers with 
statistically significant overexpression within each of the subclusters 
after Bonferroni multiple-hypothesis correction.

Specifically, our procedure for annotating the cell subclusters for 
cell subtype is as follows. First, if there is significant overexpression of 
one or more marker genes for a cell subtype and not for the other two 
cell types, then we identify that subcluster as the marked cell type. 
Otherwise, if a subcluster has significant overexpression of markers 
from multiple cell subtypes, we identify the cluster as the cell subtype 
with the greatest proportion of markers that are significantly over-
expressed. If the greatest proportion of significantly overexpressed 
markers is similar for two or more cell subtypes or if there are no sig-
nificantly overexpressed markers for any cell subtypes, then we fail to 
identify a cell subtype label for that subcluster.

Spatial region classifiers for MERFISH dataset of SVZ
To train the regional SVZ classifiers, we performed TISSUE 
uncertainty-aware SpaGE spatial gene expression prediction of the 
whole-transcriptome (that is, all genes in the paired single-cell RNA-seq 
dataset) and obtained P values for differential expression in dorsal 
versus ventral regions for each cell type (qNSC/astrocyte, aNSC/NPC, 
neuroblast) using the TISSUE multiple imputation t-test. For each cell 
type, we selected the top 20 most differentially expressed genes with 
the lowest TISSUE multiple imputation t-test P values across the dorsal 
and ventral regions. Then, we trained cell-type-specific penalized logis-
tic regression models (sklearn.linear_model.LogisticRegression() with 
penalty = ‘l1’ and solver = ‘liblinear’) to predict the regional origin of the 
cell from these 20 predicted gene expression features. The inputs were 
standardized before fitting the logistic regression model. We obtained 
class probabilities for each cell using 10-fold cross-validation, training 
and evaluating an independent model on each train and test split. For 
comparison, we used either the TISSUE-filtered input with the 67% 

prediction interval width or unfiltered input in fitting and evaluating 
the classifiers. For each cell type and approach (TISSUE-filtered or 
baseline unfiltered predicted expression), we measured the perfor-
mance of the classifiers using the F1 score, accuracy, area under the 
receiver-operator curve and average precision score using the cor-
responding Scikit-learn implementations of these metrics.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All processed spatial transcriptomics and RNA-seq dataset pairings, 
including the final annotated adult mouse SVZ MERFISH dataset, have 
been deposited at https://doi.org/10.5281/zenodo.8259942. Other 
data files (raw images and large intermediate data files) can be pro-
vided upon reasonable request. Raw data were accessed from existing 
benchmark datasets7 and are also available from the following studies:
Mouse hippocampus: Spatial transcriptomics (seqFISH) at https://
content.cruk.cam.ac.uk/jmlab/SpatialMouseAtlas2020/; RNA-seq (10x 
Chromium) at GSE158450 in the Gene Expression Omnibus (GEO) for 
‘HIPP_sc_Rep1_10X sample’.
Mouse primary visual cortex: Spatial transcriptomics (MERFISH) at 
https://github.com/spacetx-spacejam/data; RNA-seq (Smart-seq) 
at https://portal.brain-map.org /atlases-and-data/rnaseq /
mouse-v1-and-alm-smart-seq for mouse primary visual cortex.
Mouse prefrontal cortex: Spatial transcriptomics (STARmap) 
at ‘20180419_BZ9_control’ in https://www.starmapresources.
com/data; RNA-seq (10x Chromium) at GSE158450 in the GEO for 
‘PFC_sc_Rep2_10X’.
Human middle temporal gyrus: Spatial transcriptomics (ISS) at https://
github.com/spacetx-spacejam/data; RNA-seq (Smart-seq) at https://
portal.brain-map.org/atlases-and-data/rnaseq/human-mtg-smart-seq.
Mouse primary visual cortex: Spatial transcriptomics (ISS) at 
https://github.com/spacetx-spacejam/data; RNA-seq (Smart-seq) 
at https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-v1- 
and-alm-smart-seq for mouse primary visual cortex.
Drosophila embryo: Spatial transcriptomics (FISH) at https://github.
com/rajewsky-lab/distmap/; RNA-seq (Drop-seq) at GSE95025 in GEO.
Mouse somatosensory cortex: Spatial transcriptomics (osmFISH) 
at http://linnarssonlab.org/osmFISH/ for cortical region subset; 
RNA-seq (Smart-seq) at https://portal.brain-map.org/atlases-and-data/ 
rnaseq/mouse-whole-cortex-and-hippocampus-smart-seq for mouse 
somatosensory cortex.
Mouse primary visual cortex: Spatial transcriptomics (ExSeq) at 
https://github.com/spacetx-spacejam/data; RNA-seq (Smart-seq) 
at https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-v1- 
and-alm-smart-seq for mouse primary visual cortex.
Mouse gastrulation: Spatial transcriptomics (seqFISH) at https://con-
tent.cruk.cam.ac.uk/jmlab/SpatialMouseAtlas2020/; RNA-seq (10x 
Chromium) ‘Sample 21’ in the MouseGastrulationData R package.
Human U2OS: Spatial transcriptomics (MERFISH) at https://www.pnas.
org/doi/suppl/10.1073/pnas.1912459116/suppl_file/pnas.1912459116.
sd12.csv; RNA-seq (10x Chromium) at ’BC22’ in GSE152048 in the GEO 
database.
Axolotl brain: Spatial transcriptomics (Stereo-seq) at ‘Stage44.h5ad’ in 
https://db.cngb.org/stomics/artista/download/; RNA-seq (10x Chro-
mium) at ‘animal1’ in ‘all_nuclei_clustered_highlevel_anno.rds’ at https://
zenodo.org/records/6390083.

Code availability
The TISSUE Python package and associated code and documentation 
are available at https://github.com/sunericd/TISSUE/, and all code for 
generating figures and analyses is separately available at https://github.
com/sunericd/tissue-figures-and-analyses/.
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Extended Data Fig. 1 | Overview of datasets and prediction performance. 
a, Visualization of cells in the eleven spatial transcriptomics datasets colored 
by the expression of the highest-expressed gene in each respective dataset. 
Abbreviations are as follows: hippocampus (Hipp.) primary visual cortex 
(VISP), prefrontal cortex (PC), middle temporal gyrus (MTG), somatosensory 
cortex (SC), gastrulation (Gast.), U-2 OS cell line (U2OS). b,c, Performance of 
all three gene prediction methods (Harmony, SpaGE, Tangram) on all datasets 

as measured by (b) gene-wise mean absolute error between predicted and 
actual gene expression over 10-fold cross-validation, and (c) gene-wise Pearson 
correlation between predicted and actual gene expression over 10-fold cross-
validation. Shown also are the number of cells (n) in the spatial transcriptomics 
datasets and the number of genes (p) shared between spatial and RNAseq 
datasets. In panels b-c, the inner box corresponds to quartiles of the metrics and 
the whiskers span up to 1.5 times the interquartile range of the metrics.
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Extended Data Fig. 2 | Evidence of gene expression similarity between spatial 
neighbors. a, Cosine similarity of gene expression profiles for 250 cells paired 
with all their neighbors in the TISSUE spatial graph compared to pairings with 
randomly drawn cells across all eleven spatial transcriptomics datasets. The 
boxplot corresponds to the quartiles of the cosine similarity measurements. The 
center line corresponds to median cosine similarity, which was strictly higher in 
the neighbor-paired comparisons than the random-paired comparisons across 
all datasets. Whiskers span up to 1.5 times the interquartile range of the metrics 

and values outside this range are shown as dots. Abbreviations are as follows: 
hippocampus (Hipp.) primary visual cortex (VISP), prefrontal cortex (PC), middle 
temporal gyrus (MTG), somatosensory cortex (SC), gastrulation (Gast.), U-2 
OS cell line (U2OS). b, Scatter plots of the cosine similarities of gene expression 
profiles for 250 cells paired with their neighbors for either the training gene set 
or the test gene set determined by random train-test split of all genes (50% train, 
50% test). Shown are cosine similarity pairs for 10 train-test splits for the two 
benchmark spatial transcriptomics datasets with the most measured genes.
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Extended Data Fig. 3 | Cell-centric variability and calibration score 
distributions for individual datasets and prediction methods. a, Pearson 
correlation of all cell-centric variability measures obtained for different numbers 
of neighbors in building the TISSUE spatial graph compared to the default setting 
of 15 neighbors. b, Correlation of cell-centric variability and absolute prediction 
error shown individually for each dataset and prediction method combination 
computed over 10-fold cross-validation. Log density with added pseudocount 
(Log1p) is shown by color, with a maximum of 1000 cells and 300 genes sampled 
from each dataset to provide more uniform representation. c, Histograms 

showing the distribution of Pearson correlations between either gene-wise or 
cell-wise similarities of prediction errors and similarities of predicted expression 
values across all spatial transcriptomic datasets and across all prediction 
methods. d, Distribution of TISSUE calibration scores shown individually for 
each dataset and prediction method combination ((kg, kc) = (4, 1)). Details on 
each dataset and prediction method can be found in Methods. Abbreviations are 
as follows: hippocampus (Hipp.) primary visual cortex (VISP), prefrontal cortex 
(PC), middle temporal gyrus (MTG), somatosensory cortex (SC), gastrulation 
(Gast.), U-2 OS cell line (U2OS).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Further evaluation of TISSUE prediction intervals. 
a-c, Correlation plots across all dataset and prediction method combinations 
computed over 10-fold cross-validation for (a) the 67% prediction interval width 
and absolute prediction error, both normalized by the absolute value of the 
predicted expression; (b) 50% prediction interval width and absolute prediction 
error; (c) 80% prediction interval width and absolute prediction error. Log 
density with added pseudocount (Log1p) is shown by color, with a maximum of 
1000 cells and 300 genes sampled from each dataset to provide more uniform 
representation. d, Gene-level calibration curves for TISSUE prediction intervals 
showing empirical coverage as a function of the specified confidence level across 
10-fold cross-validation. Each line corresponds to an independent gene in the 
spatial transcriptomics dataset. Abbreviations are as follows: hippocampus 
(Hipp.) primary visual cortex (VISP), prefrontal cortex (PC), middle temporal 
gyrus (MTG), somatosensory cortex (SC), gastrulation (Gast.), U-2 OS cell line 
(U2OS). e,f, Calibration curves for TISSUE prediction intervals showing empirical 

coverage as a function of the specified confidence level across 10-fold cross-
validation (e) under automated setting of (kg, kc) for stratified grouping; and 
(f) for two technical replicates of the mouse gastrulation seqFISH dataset with 
(kg, kc) = (4, 1). The calibration error is annotated for each prediction method 
(see Methods). g, Calibration curves for TISSUE prediction intervals showing 
empirical coverage as a function of the specified confidence level across 10-fold 
cross-validation for the mouse somatosensory cortex osmFISH dataset with 
different combinations of Sprod de-noising or Sprod-based spatial similarity 
graph instead of the TISSUE spatial neighbors graph. The calibration error is 
annotated for each prediction method (see Methods). h, Correlation plot of 
67% prediction interval width with TISSUE spatial neighbors graph with cosine 
similarity weighting and 67% prediction interval width with Sprod similarity 
graph and weighting for the mouse somatosensory cortex osmFISH dataset and 
all prediction methods computed over 10-fold cross-validation.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Additional differential gene expression analysis with 
TISSUE. a, False discovery rate of differentially expressed genes between cell 
type or anatomic region labels (one versus all approach) using the differentially 
expressed genes on the measured gene expression profiles as the ground truth 
across different p-value cutoffs. P-values were computed using two-sided t-test. 
Discoveries are assessed across all genes for all class labels. Shown are results 
for all three prediction methods and all spatial transcriptomics datasets with 
cell type or region labels available. All calibration scores were generated with 
(kg, kc) = (4, 1) settings for stratified grouping. Abbreviations are as follows: 
hippocampus (Hipp.) primary visual cortex (VISP), middle temporal gyrus 
(MTG), somatosensory cortex (SC), gastrulation (Gast.). b, False discovery 
rate of differentially expressed genes between cell type or anatomic region 

labels (one versus all approach) as a function of the number of discoveries and 
with automated stratified grouping. c, False discovery rate of differentially 
expressed genes between cell type or anatomic region labels (one versus all 
approach) as a function of the number of discoveries and with (kg, kc) = (4, 1) 
settings for stratified grouping for the alternative TISSUE multiple imputation 
framework using the ‘greater than’ one-sided Wilcoxon/Mann-Whitney test. 
d, False discovery rate of spatially variable genes as a function of the number 
of discoveries and with (kg, kc) = (4, 1) settings for stratified grouping for the 
alternative TISSUE multiple imputation framework using the SpatialDE test. 
e, Correlation plot of the log p-values obtained from the TISSUE multiple 
imputation t-test framework between two technical replicates of the mouse 
gastrulation seqFISH dataset.
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Extended Data Fig. 6 | Additional experiments for uncertainty-aware 
supervised learning, clustering, and visualization. a-c, Downstream task 
performance metrics on the three most prominent anatomic region class labels 
for the mouse somatosensory osmFISH dataset. Shown are metrics for all three 
prediction methods with automated stratified grouping settings. P-value was 
computed using a paired two-sided t-test on n = 3 independent prediction 
methods. The box corresponds to quartiles of the metrics and the whiskers 
span up to 1.5 times the interquartile range of the metrics. (a) Accuracy, F1 
score, and ROC-AUC (receiver-operator characteristic area under the curve) 
metrics for logistic regression models trained on the predicted gene expression, 
TISSUE-filtered predicted gene expression, or measured gene expression for 
classification. (b) Adjusted Rand index (ARI) for k-means clustering (k = 3) on 
the top 15 principal components obtained from the predicted gene expression, 
TISSUE-filtered predicted gene expression, or measured gene expression for 
classification. (c) Linear separability measured as classification accuracy of 

linear kernel support vector classifier fitted on the top 15 principal components 
obtained from the predicted gene expression, TISSUE-filtered predicted 
gene expression, or measured gene expression for classification. d, Average 
improvement of performance metrics using TISSUE-filtered approach in lieu of 
unfiltered approach on predicted expression for supervised learning (Accuracy, 
F1, ROC-AUC), clustering (adjusted Rand index (ARI)), and visualization 
(linear separability) for the top three classes across all dataset and class label 
combinations. Results were obtained using the 50% prediction interval width 
for filtering. Abbreviations are as follows: hippocampus (Hipp.) primary visual 
cortex (VISP), middle temporal gyrus (MTG), somatosensory cortex (SC), 
gastrulation (Gast.). Asterisks denote significant difference in performance 
metrics between TISSUE-filtered approach and unfiltered approach (p<0.05) 
with p-values computed using a paired two-sided t-test on n=3 independent 
prediction methods. e, Same as panel d except with the 80% prediction interval 
width for filtering.
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Extended Data Fig. 7 | Uncertainty-aware clustering and label separation with 
TISSUE-WPCA. a, Schematic illustration of the weighted principal component 
analysis (WPCA) pipeline where the inverse TISSUE prediction interval width 
is used to obtain principal components from WPCA, which are then used for 
downstream tasks of clustering and label separation. b, Linear separability 
measured as the binary classification accuracy of a linear kernel support vector 
classifier fitted on the two cell clusters in the simulated spatial transcriptomics 
data as a function of the simulated mix-in proportion. The classifier was trained 
on the top 15 principal components obtained from the measured gene expression 
profiles with PCA, predicted gene expression profiles with PCA, and predicted 
gene expression profiles with TISSUE-WPCA. For TISSUE-WPCA, weights were 
determined by binarizing the inverse normalized 67% prediction interval width 

(see Methods). Results were obtained using automated stratified grouping. 
Bands represent the interquartile range and solid line denotes the median linear 
separability across 20 simulated datasets. c, Same as in panel b except with 
TISSUE-WPCA weighting using the log-transformed inverse normalized 67% 
prediction interval width. d, Adjusted Rand index (ARI) for k-means clustering 
(k = 3) on the top 15 principal components obtained from PCA on the predicted 
expression or TISSUE-WPCA on the predicted gene expression for six real spatial 
transcriptomics dataset and label pairings and all prediction methods. P-value 
was computed using a paired two-sided t-test on n=18 sets of predictions across 
3 independent prediction methods and 6 independent dataset and class label 
combinations. The box corresponds to quartiles of the metrics and the whiskers 
span up to 1.5 times the interquartile range of the metrics.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | TISSUE is necessary to identify ambiguous NSC 
lineage subtype. a, Heatmap of the scaled log-normalized gene expression 
of original cell type markers in the adult mouse subventricular zone MERFISH 
dataset for each of the identified cell type clusters. The Ambiguous cell type 
cluster in the first row exhibits high expression of qNSC/astrocyte, aNSC/NPC, 
and neuroblast markers. b, Additional predicted marker genes for the second 
ambiguous subcluster are differentially expressed for all qNSC/astrocyte and 
aNSC/NPC markers under traditional hypothesis testing with two-sided t-test 
on the predicted gene expression (Predicted). With TISSUE multiple imputation 
two-sided t-test, there are substantially more aNSC/NPC markers that are 
differentially over-expressed in the ambiguous subcluster (TISSUE), permitting 
identification of this subcluster as an aNSC/NPC subtype cluster. P-values are 
shown for all predicted marker genes with significance threshold of Bonferroni-
adjusted p < 0.1 for either two-sided t-test or TISSUE multiple imputation 
two-sided t-test. c, Table indicating whether each of the three cell subtypes of the 

NSC lineage could be resolved from predicted marker genes using baseline or 
TISSUE-based approaches. Green checks indicate successful identification of cell 
subtype and red crosses indicate unsuccessful identification of cell subtype.  
d, Relative proportion of each of the three TISSUE-identified subtypes in the 
neural stem cell lineage cluster for either the left or right lateral ventricle. 
e, Relative proportions of aNSC/NPC and neuroblast populations across 
the MERFISH dataset and three single-cell RNAseq datasets of the mouse 
subventricular zone. The qNSC/astrocyte proportions were not compared since 
they were aggregated with astrocytes of the striatum in the single-cell RNAseq 
datasets. f, Spatial visualization of the cells in the neural stem cell lineage cluster 
colored by dorsal or ventral spatial location labels. g, Dorsal versus ventral 
classification performance of TISSUE-filtered penalized logistic regression 
models and baseline unfiltered penalized logistic regression models evaluated 
using 10-fold cross-validation across F1 score, accuracy, area under the receiver-
operator curve, and average precision.
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Extended Data Fig. 9 | Computational runtime for TISSUE. a, Bar plots of 
total runtimes for spatial gene expression prediction computations over 10 
predictions to generate estimated predictions on all calibration genes. Bars 
denote the mean runtime across 10 instances of TISSUE prediction and each dot 
represents the runtime for one instance of generating TISSUE predictions using 

10-fold cross-validation. b, Bar plots of total runtimes for TISSUE prediction 
interval calculation including computation of cell-centric variability and 
calibration score sets. Bars denote the mean runtime across 10 instances of 
TISSUE prediction interval calculation and each dot represents the runtime for 
one instance of TISSUE prediction interval calculation.
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